Higher order ordinary differential equations

27 października 2020

The equation of the form
$a_{n}(t) x^{(n)}+a_{n-1}(t) x^{(n-1)}+a_{n-2}(t) x^{(n-2)}+\ldots+a_{1}(t) x^{\prime}+a_{0}(t) x=f(t)$,
where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}, f$ are given functions of t (defined on an interval (a, b) with values in $\mathbb{R})$ and $x^{\prime}, \ldots, x^{(n-1)}, x^{(n)}$ are the successive derivatives of the unknown function x of the variable t, is called a linear differential equation of order n.

The equation of the form
$a_{n}(t) x^{(n)}+a_{n-1}(t) x^{(n-1)}+a_{n-2}(t) x^{(n-2)}+\ldots+a_{1}(t) x^{\prime}+a_{0}(t) x=f(t)$,
where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}, f$ are given functions of t (defined on an interval (a, b) with values in $\mathbb{R})$ and $x^{\prime}, \ldots, x^{(n-1)}, x^{(n)}$ are the successive derivatives of the unknown function x of the variable t, is called a linear differential equation of order n. The functions $a_{n-1}, \ldots, a_{1}, a_{0}$ are called the coefficients of the equation.

The equation of the form
$a_{n}(t) x^{(n)}+a_{n-1}(t) x^{(n-1)}+a_{n-2}(t) x^{(n-2)}+\ldots+a_{1}(t) x^{\prime}+a_{0}(t) x=f(t)$,
where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}, f$ are given functions of t (defined on an interval (a, b) with values in $\mathbb{R})$ and $x^{\prime}, \ldots, x^{(n-1)}, x^{(n)}$ are the successive derivatives of the unknown function x of the variable t, is called a linear differential equation of order n. The functions $a_{n-1}, \ldots, a_{1}, a_{0}$ are called the coefficients of the equation. If $f(t)=0$ for every t, then the equation is called homogenous, otherwise it is called inhomogeneous.

Example

ODE of 2nd order:

$$
\left(1-t^{2}\right) x^{\prime \prime}-2 t x^{\prime}+2 x=0
$$

Example

ODE of 2nd order:

$$
\left(1-t^{2}\right) x^{\prime \prime}-2 t x^{\prime}+2 x=0
$$

Coefficients:

$$
a_{2}(t)=1-t^{2}, \quad a_{1}(t)=-2 t, \quad a_{0}(t)=-2
$$

Example

ODE of 2nd order:

$$
\left(1-t^{2}\right) x^{\prime \prime}-2 t x^{\prime}+2 x=0
$$

Coefficients:

$$
a_{2}(t)=1-t^{2}, \quad a_{1}(t)=-2 t, \quad a_{0}(t)=-2
$$

This equation is homogeneous.

Example

ODE of 3rd order:

$$
x^{\prime \prime \prime}-x^{\prime \prime}-8 x^{\prime}+12 x=104 \sin 2 t-12 t+32
$$

Example

ODE of 3rd order:

$$
x^{\prime \prime \prime}-x^{\prime \prime}-8 x^{\prime}+12 x=104 \sin 2 t-12 t+32
$$

Coefficients:

$$
a_{3}(t)=1, \quad a_{2}(t)=-1, \quad a_{1}(t)=-8, \quad a_{0}(t)=12
$$

Example

ODE of 3rd order:

$$
x^{\prime \prime \prime}-x^{\prime \prime}-8 x^{\prime}+12 x=104 \sin 2 t-12 t+32
$$

Coefficients:

$$
a_{3}(t)=1, \quad a_{2}(t)=-1, \quad a_{1}(t)=-8, \quad a_{0}(t)=12
$$

This equation is inhomogeneous.

If there are conditions of the form:

$$
\left\{\begin{array}{rll}
x\left(t_{0}\right) & = & x_{0} \\
x^{\prime}\left(t_{0}\right) & = & x_{1} \\
& \vdots & \\
x^{(n-2)}\left(t_{0}\right) & = & x_{n-2} \\
x^{(n-1)}\left(t_{0}\right) & = & x_{n-1}
\end{array}\right.
$$

where $t_{0} \in(a, b)$ and $x_{0}, x_{1}, \ldots x_{n-1} \in \mathbb{R}$, then the equation with these conditions is called an initial value problem.

Example

$$
\begin{aligned}
x^{\prime \prime}-4 x^{\prime}+4 x & =e^{2 t} \\
x(0) & =1 \\
x^{\prime}(0) & =0
\end{aligned}
$$

Consider a homogenous equation:

$$
\begin{equation*}
x^{(n)}+a_{n-1}(t) x^{(n-1)}+a_{n-2}(t) x^{(n-2)}+\ldots+a_{1}(t) x^{\prime}+a_{0}(t) x=0 . \tag{1}
\end{equation*}
$$

Definition

The sequence $\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$ of solutions of (1) is called a fundamental system of this equation if for every $t \in(a, b)$ it follows that

$$
\operatorname{det}\left[\begin{array}{cccc}
x_{1}(t) & x_{2}(t) & \ldots & x_{n}(t) \\
x_{1}^{\prime}(t) & x_{2}^{\prime}(t) & \ldots & x_{n}^{\prime}(t) \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{(n-1)}(t) & x_{2}^{(n-1)}(t) & \ldots & x_{n}^{(n-1)}(t)
\end{array}\right] \neq 0
$$

The determinant given in the above definition is called the Wronskian of $\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$.

Theorem

If $\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$ is a fundamental system of (1), then the general solution of (1) is given by

$$
x(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)+\ldots+C_{n} x_{n}(t),
$$

where $C_{1}, C_{2}, \ldots, C_{n} \in \mathbb{R}$.
In other words, all the solutions of (1) are of the above form.

Example

$$
\left(1-t^{2}\right) x^{\prime \prime}-2 t x^{\prime}+2 x=0
$$

$F S: x_{1}(t)=t$

$$
x_{2}(t)=\frac{t}{2} \cdot \ln \frac{1+t}{1-t}-1
$$

Example

$$
\begin{aligned}
& x^{\prime \prime \prime}-x^{\prime \prime}-8 x^{\prime}+12 x=0 \\
& F S: x_{1}(t)=e^{-3 t} \\
& x_{2}(t)=e^{2 t} \\
& x_{3}(t)=t e^{2 t}
\end{aligned}
$$

Example

$$
\begin{gathered}
x^{\prime \prime}-4 x^{\prime}+4 x=0 \\
F S: x_{1}(t)=e^{2 t} \\
x_{1}(t)=t e^{2 t}
\end{gathered}
$$

