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Calculus

Derivatives

Derivatives of basic functions:

(c)′ = 0,

(x)′ = 1,

(xa)′ = a · xa−1,
(ex)′ = ex ,

(ax)′ = ax ln a, a ∈ R+ \ {1},

(ln |x |)′ = 1

x
, x ∈ R+,

(loga x)
′ =

1

x ln a
, a ∈ R+ \ {1},
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(sin x)′ = cos x ,

(cos x)′ = − sin x ,

(tan x)′ =
1

cos2 x
= 1+ tan2 x , x 6= π

2
+ kπ, k ∈ Z,

(cot x)′ = − 1

sin2 x
= −(1+ cot2 x), x 6= π + kπ, k ∈ Z,

(arc sin x)′ =
1√

1− x2
, x ∈ (−1, 1),

(arc cos x)′ =
−1√
1− x2

, x ∈ (−1, 1),

(arctan x)′ =
1

1+ x2
,

(arccot x)′ = − 1

1+ x2
.
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Theorem

Let f and g be di�erentiable functions. Then,

1 (f + g)′(x) = f ′(x) + g ′(x) (i.e., di�erentiation is
additive),

2 (f − g)′(x) = f ′(x)− g ′(x),

3 (f · g)′(x) = f ′(x) · g(x) + f (x) · g ′(x),
4 for x such that g(x) 6= 0,(

f

g

)′
(x) =

f ′(x) · g(x)− f (x) · g ′(x)
[g(x)]2

.
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Example

Let c be a real constant, and f a di�erentiable function. Then,

[(cf )(x)]′ = c ′ · f (x)+ c · f ′(x) = 0 · f (x)+ c · f ′(x) = c · f ′(x).

It can be understood as a next di�erentiation rule, so-called
homogeneity.

Let f (x) 6= 0. Then,(
1

f (x)

)′
=

1′ · f (x)− 1 · f ′(x)
[f (x)]2

=
−f ′(x)
[f (x)]2

.

It can be understood as a next di�erentiation rule.
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Example

(tan x)′ =

(
sin x

cos x

)′
=

sin′ x · cos x − sin x · cos′ x
cos2 x

=
cos x · cos x + sin x · sin x

cos2 x
=

1

cos2 x
,

x 6= π

2
+ kπ, k ∈ Z
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Theorem

(Compound function) If a compund function f ◦ g is
de�ned in a neighbourhood of a point x0, the function g is
di�erentiable in x0, and f is di�erentiable in g0 = g(x0), then
the derivative of the compund function f ◦ g in x0 is given by

(f ◦ g)′(x0) = f ′ (g(x0)) · g ′(x0) = f ′(g0) · g ′(x0).

It can be written as

d(f ◦ g)
dx

(x0) =
df

dg
(g0) ·

dg

dx
(x0).
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Example

(
e1/x

)′
= e1/x · −1

x2
=
−e1/x

x2
, x 6= 0
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Theorem

(Derivative of the inverse function) If a di�erentiable
functiona f has an inverse function f −1, then the derivative of
the inverse function is equal to the inverse derivative of the
original function: (

f −1(x)
)′
=

1

f ′ (f −1(x))
.

Remark

It can be written as
dy

dx
=

1
dx
dy

.
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.
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Example

1 Derivative of logarithm:

(ln x)′ =
1

(ey )′

∣∣∣∣
y=ln x

=
1

ey

∣∣∣∣
y=ln x

=
1

e ln x
=

1

x

2 Derivative of arcus cosine:

(arc cos x)′ =
1

(cos y)′

∣∣∣∣
y=arc cos x

=
1

− sin y

∣∣∣∣
y=arc cos x

(∗)
=

−1√
1− cos2 y

∣∣∣∣∣
y=arc cos x

=
−1√
1− x2

(∗) � in the domain (the set, in this case an interval,
where the function is de�ned) of arcus cosine, i.e., (0, π),
sinus is positive
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If f ′ is di�erentiable, then the second derivative of f is de�ned
by f ′′(x) = [f ′(x)]′. Further derivatives are de�ned similarly.

Example

f (x) = −4x3 + 2x ,

f ′(x) = −12x2 + 2,

f ′′(x) = −24x ,
f ′′′(x) = −24,
f (4)(x) = 0.
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Example

f (x) = cos ln x , x ∈ R+,

f ′(x) = − sin ln x · 1
x
=
− sin ln x

x
,

f ′′(x) =

(
− cos ln x · 1

x

)
· x − (− sin ln x) · 1
x2

=
sin ln x − cos ln x

x2
= − f (x)

x2
− f ′(x)

x
.
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Basic rules of integration:

1

∫
xa dx = xa+1

a+1
+ C , dla a 6= −1, x ∈ R+ (since(

xa+1

a+1
+ C

)′
= (a+1)·xa

a+1
= xa)

If a is a positive integer, then x ∈ R; if it is a negative
integer, then x 6= 0.

Example

Several special cases:∫
dx = x + C∫
dx√
x
= 2
√
x + C , x ∈ R+∫

dx
x2

= − 1

x + C , x 6= 0
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2

∫
dx
x
= ln |x |+ C , x 6= 0 (bo (ln x)′ = 1

x
,

(ln(−x))′ = 1

−x · (−1) =
1

x
)

3

∫
exdx = ex + C

4

∫
axdx = ax

ln a
+ C , a ∈ R \ {1}

5

∫
sin x dx = − cos x + C

6

∫
cos x dx = sin x + C

7

∫
dx

cos2 x
= tan x + C , cos x 6= 0

8

∫
dx

sin2 x
= − cot x + C , sin x 6= 0

9

∫
dx√
1−x2 = arc sin x + C1 = − arc cos x + C2, −1 < x < 1

10

∫
dx

x2+1
= arc tg x + C1 = − arc ctg x + C2
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Example

Integrals of polynomials:∫ n∑
k=0

(
akx

k
)
dx =

n∑
k=0

∫
akx

kdx

=
n∑

k=0

ak

∫
xkdx =

n∑
k=0

akx
k+1

k + 1
+ C

1

∫
(2x2 − 3x + 1)dx = 2

3
x3 − 3

2
x2 + x + C ,

2

∫
(7x6 − 6x5 + 5x4 − 4x3 + 3x2 − 2x + 1)dx =

x7 − x6 + x5 − x4 + x3 − x2 + x + C ,

3

∫
(3x3 + x2 − x − 1)dx = 3x4

4
+ x3

3
− x2

2
− x + C .
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Theorem

(Partial integraltion) If the functions u and v have
continuous derivatives, then∫

u(x)v ′(x) dx = u(x)v(x)−
∫

u′(x)v(x) dx .

Proof. It follows from di�erential calculus that

(u(x)v(x))′ = u′(x)v(x) + u(x)v ′(x).

Integration on both sides and subtraction of
∫
u′v yields the

desired formula.
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Example

∫
x2 ln x dx =

[
u = ln x
v ′ = x2

∣∣∣∣ u′ = 1/x
v = x3/3

]
=

x3

3
ln x −

∫
x3

3x
dx

=
x3

3
ln x −

∫
x2

3
dx =

x3

3
ln x − x3

9
+ C

Remark

As long as there is an unde�ned integral in the expression,
there is no need to write the constant C , since it is included in
the integral. After the last integral is computed, one cannot
forget the constant.
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Example

∫
x2 cos x dx =

[
u = x2

v ′ = cos x

∣∣∣∣ u′ = 2x
v = sin x

]
= x2 sin x − 2

∫
x sin x dx =

[
u = x

v ′ = sin x

∣∣∣∣ u′ = 1
v = − cos x

]
= x2 sin x − 2

[
−x cos x −

∫
(− cos x)dx

]
= x2 sin x + 2x cos x − 2

∫
cos x dx

= x2 sin x + 2x cos x − 2 sin x + C
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Example

∫
ex cos x dx =

[
u = ex

v ′ = cos x

∣∣∣∣ u′ = ex

v = sin x

]
= ex sin x −

∫
ex sin x dx =

[
u = ex

v ′ = sin x

∣∣∣∣ u′ = ex

v = − cos x

]
= ex sin x −

[
−ex cos x +

∫
ex cos x dx

]
= ex(sin x + cos x)−

∫
ex cos x dx
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Example

The integral of ex cos x occurs on both sides, so its value can
be computed from the equation∫

ex cos x dx = ex(sin x + cos x)−
∫

ex cos x dx .

Remember that an integral is de�ned up to a constant, so it
can have di�erent values on the left and on the right side of
the equation.
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Example

We write it as∫
ex cos x dx = ex(sin x + cos x)−

∫
ex cos x dx + C .

Thus, we get∫
ex cos x dx =

ex(sin x + cos x)

2
+ C .

Note that C is a di�erent constant than in the previous
equation.
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Remark

By partial integration, the function with a simple primitive,
e.g., sine, cosine, exponential function, or sometimes power
function (see the �rst example) will be chosen as v ′. If there
are monomials, we usually try to make their degree lower.
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Theorem

(Substitution) If

1 function f : I → R is continuous in interval I ,

2 function u : J → I has a continuous derivative in
interval J ,

then ∫
f (u(x)) u′(x) dx =

∫
f (t)dt = F (u(x)) + C ,

where F is any primitive function of f .
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Example

∫
tan x dx =

∫
sin x

cos x
dx =

[
u = cos x
u′ = − sin x

]
=

−
∫

du

u
= − ln |u|+ C

= − ln | cos x |+ C , x 6= π

2
+ kπ, k ∈ Z
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Example

∫
2x√
x2 − 1

dx =

[
u = x2 − 1
du = 2x dx

]
=

∫
du√
u

= 2
√
u + C = 2

√
x2 − 1+ C ,

x2 − 1 > 0.
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Remark

Note the di�erence in notation when u is introduced. In the
second example we use the di�erential of u, du = u′dx .
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Example

∫
dx√
2x − 3

=

 t =
√
2x − 3

t2 = 2x − 3
2t dt = 2dx

 =

∫
t dt

t

=

∫
dt = t + C =

√
2x − 3+ C ,

x > 3

2
,
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or with another substitution:∫
dx√
2x − 3

=

[
t = 2x − 3
dt = 2dx

]
=

1

2

∫
t−

1
2dt

=
1

2
· t

1
2

1

2

+ C =
√
2x − 3+ C ,

x > 3

2
.
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Example

∫
x2
√
2x3 − 3 dx =

 t =
√
2x3 − 3

t2 = 2x3 − 3
2t dt = 6x2 dx

 =

∫
t · t

3
dt =

1

3

∫
t2 dt

=
1

3
· t

3

3
+ C =

1

9

(√
2x3 − 3

)3
+ C , x ≥ 3

√
3

2
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or with another substitution:∫
x2
√
2x3 − 3 dx =

[
t = 2x3 − 3
dt = 6x2 dx

]
=

1

6

∫
t
1
2 dt =

1

6
· t

3
2

3

2

+ C

=
1

9

(√
t
)3

+ C =
1

9

(√
2x3 − 3

)3
+ C , x ≥ 3

√
3

2


	Derivatives
	Integrals

